
Enhancing Privacy in Identity Federation
Anonymous Credentials Ensure Unlinkability in WS-Security

Jan Camenisch

IBM Zurich Research Lab
jca@zurich.ibm.com

Thomas Groß

IBM Zurich Research Lab
tgr@zurich.ibm.com

Dieter Sommer

IBM Zurich Research Lab
dso@zurich.ibm.com

Abstract

Federated Identity Management (FIM) allows for securely provisioning certified user identities and attributes to relying
parties. It establishes higher security and data quality compared to user-asserted attributes and allows stronger user privacy
protection than technologies based upon user-side attribute certificates. Therefore, industry pursues the deployment of FIM
solutions as one cornerstone of the WS-Security framework. Current research proposes even more powerful methods for
security and privacy protection in identity management with so calledanonymous credential systems. Being based on new,
yet well-researched, signature schemes and cryptographic zero-knowledge proofs, these systems have the potential to improve
the capabilities of FIM by superior privacy protection, user control, and multiple use of single credentials. Unfortunately,
anonymous credential systems and their semantics being based upon zero-knowledge proofs are incompatible with the XML
Signature Standard which is the basis for the WS-Security and most FIM frameworks. We put forth a general construction
for integrating anonymous credential systems with the XML Signature Standard and FIM protocols. We apply this method to
the WS-Security protocol framework and thus obtain a very flexible WS-Federation Active Requestor Profile with strong user
control and superior privacy protection.

1 Introduction

Today’s most important on-line transactions require a user to provide her identity or certain attributes to the
service provider. As a prevalent approach users enter uncertified attributes in web forms, which implies that
service providers request more attributes than required for the business process itself. They use the additional
information to check the provided attributes for consistency.

Federated identity management (FIM) protocols have multiple advantages over this approach: the service
provider can obtain precisely the attributes required and have these attributes certified by a trusted identity provider.
The FIM protocols follow the schema to send a requestor acting on behalf of a user to and identity provider where
the user authenticates and obtains a credential for the attributes requested by the service provider. In the optimal
case, the FIM approach enhances the user’s privacy by following the data minimization principle: only user data
required for the service are transmitted.

As shown by recent research, FIM protocols such as SAML [19], Liberty [17], or WS-Federation [15] excel
approaches relying on uncertified attributes in terms of both security [12, 13] and privacy [21, 20]. Additionally,
FIM protocols have privacy advantages compared to user-side attribute certificates as those certificates require
that the full certificate be released in an interaction, even if only a subset of the attributes needs to be disclosed.
Thus, FIM provides widely-deployed and standardized protocols with benefits in terms of security of attributes
and privacy of the users.

Research in cryptography provides even stronger methods for identity management and attribute exchange: so
calledanonymous credential systems. The key property of this concept introduced by Chaum [9] is: the user may
selectively show attributes stored in a single credential and stay completely unlinkable over multiple transactions.

1

This allows a user to keep an anonymous credential secret and use it multiple times to provision certified attribute
data to relying parties.

Therefore, this concept allows for even stronger privacy protection while maintaining certified attributes being
endorsed by a trusted identity provider. Anonymous credential systems have been pursued in different research
threads by, e.g., [2] or a formal definition in [18], and reached a breakthrough in terms of features and efficiency
in the Camenisch and Lysyanskaya system [4, 5, 6]. A variant of their system, the Direct Anonymous Attestation
(DAA) protocol [3], has been standardized within the Trusted Computing Group (TCG).

Camenisch and Lysyanskaya also generalized the anonymous credential systems to so-calledprivate certificate
systemsthat support more differentiated attributes, the show of arbitrary logical formulas over those attributes,
and the integration of verifiable encrypted attributes. When asserting attributes with this system, the identity
provider need not be involved in the transaction. The user obtains her private certificates ahead of time and stores
them locally. Whenever the user wants to provide certified attributes to a service provider, she uses the private
certificate to generate a new proof to show a logical formula over the attributes in her private certificate. A private
certificate can be leveraged multiple times in this manner with the same or different relying parties. Unless the
attribute information itself inherently breaks linkability (e.g., by revealing name and date of birth), all transactions
involving a private certificate are unlinkable to each other.

The cryptography of the private certificate systems allows that even if an adversary obtains the transaction
transcripts of all identity providersandall relying parties (collusion) the transactions can still not be linked unless
attribute information allows for this. In FIM protocols the user’s privacy can be attacked by tracing the user’s
transactions over multiple service and identity providers.

The property that a credential, once obtained, can be used many times with (different) relying parties allows for
cheaper (amortized) operation cost of the overall system. Furthermore, new scenarios with unreachable or off-line
identity providers become possible, like mobile scenarios without connectivity to the identity provider, but only to
some local relying party.

However, the building block of private certificate systems enabling these powerful features in terms of privacy
protection and off-line identity provider also render the integration in FIM or WS-Security frameworks a serious
challenge: the zero-knowledge proof of knowledge. In particular, the stable and well-established standard for
XML Signatures, which is the basis for most FIM and WS-Security frameworks, was designed without taking the
complex semantics of such a cryptographic primitive into account and only supports traditional digital signature
schemes. As any approach to extend the XML Signature Standard itself is endangered by the standardization
process and may jeopardize the clear semantics of the XML Signature Standard, we follow a different approach.

We have two main contributions: first, we show a general method that securely transfers the semantics of zero-
knowledge proof-based protocols to XML-DSig keys and signatures. In a nutshell, our method uses a verifiable
random function to bind a temporary XML signature key to a zero-knowledge proof of knowledge. We show that
binding is secure in terms of that a recipient of a token can verify that the temporary key was generated faithfully.

Second, we demonstrate this method by integrating the semantic of a strong private certificate system into a
particular FIM framework. We use, due to its practical importance, WS-Security [14] as a running example to be
enhanced with those proof semantics. This enables a new WS-Federation Active Requestor profile [15, 16] that
uses private certificates instead of traditional identities and therefore leverages all the advantages of the private
certificate system.

Paper outline. We structure the remainder of this paper as follows. Section 2 explains the technologies involved
in our solution. We first introduce the WS-Security area and underlying XML Signature Standards, and secondly
explain the properties of private certificate systems. In Section 3, we reason why we need private certificate
systems in FIM protocols and why this is a hard task to achieve. Section 4 contains the construction of our abstract
method as well as its application to a WS-Security token type. We conclude the paper in Section 5.

2 Preliminaries

In this section, we provide the background regarding the XML Signature standard, WS-Security and its use
for federated identity management, and private certificate systems. In particular, we motivate the properties of

2

traditional FIM approaches and private certificate systems.

2.1 Established Technologies and Standards

We provide the required background to established standards and technologies which the contributions in this
paper are based on. These are the XML Signature Standard, the WS-Security protocol framework, WS-Trust, and
WS-Federation.

2.1.1 XML Signature Standard

The XML Signature Standard (XML-DSig) [1] defines how to do a signature on parts of an XML document or,
more generally, on any web resource. The standard completely defines the syntax and also the basic semantics for
XML signatures.

Without going into details, a signature’s message is defined by a list of references, each to a web resource or part
of an XML document. Each referred message part is hashed and then the list of digests and reference information
is signed by a traditional digital signature scheme like DSA [23] or RSA [22], after applying a hash function.

Typical examples for applications of XML signatures include security assertion languages and protocol frame-
works like WS-Security.

As the approach of XML-DSig has not been designed to account for advanced cryptographic mechanisms like
zero-knowledge proofs, it cannot work with those mechanisms in a straightforward way.

Semantics. The XML Signature standard defines only basic semantics for signatures, that is, the semantics of
associating a cryptographic signature with a message. This semantics in particular includes the integrity and
message authentication properties of the cryptographic signature. This boils down to the property of only the
holder of the private signing key that corresponds to the public key being able to compute the signature and thus
the signed message parts are protected against unauthorized changes. Signer authentication is supported by XML-
DSig, but out of scope of the standard as this is trust semantics that is left to extensions by applications. This
and other trust semantics are to be defined by applications of XML-DSig. XML-DSig’s extensibility allows for
extension of semantics by arbitrary trust semantics.

2.1.2 WS-Security

WS-Security is a protocol framework for providing message security of web services messages. In particular,
messages can carry claims contained in security tokens in the message. Claims typically are statements about the
requestor for authenticating her, or, more generally, to establish the required kind of identity with the relying party.

The basic mechanisms for associating a signature to the message is XML Signature. The basic semantics used
in WS-Security is the semantics of XML Signature. Further semantics can be associated to the signature either in
a WS-Security profile or by the applications that further process the message. The extensibility of the semantics of
the signature is key for our method of transferring the semantics of the proof to the semantics of the XML-based
signature.

An XML signature used by a WS-Security message takes over the basic signature semantics of XML Signature
(basically, integrity) and extends it. An extension is the proof of knowledge of a confirmation key for a security
token done by a signature. The security token can be a public key certificate, trust semantics in which is left out
of the specification. WS-Security profiles define extensions to the basic semantics as fits the intended application
area for the profile.

2.1.3 Federated Identity Management

Federated identity management (FIM) protocols are protocols between three types of players. Auser, whose
identity is to be federated, together with herrequestormachine, anidentity providerwho certifies the identity, and
a relying partywho is the recipient of the user’s identity. Today’s standardized and established FIM protocols
typically make use of signed assertion tokens being conveyed from the identity provider to the requestor and from
the requestor to the relying party. A prominent example for such a protocol is the WS-Federation Active Requestor
Profile [16]. The latter is based on security assertions contained in WS-Security messages. Whenever the identity

3

Requestor Identity Provider Relying Party 1

1. Request security token (age>21)

2. Security token (age>21)

3. Send secured request (age>21)

4. Return result

5. Request security token (zip code)

6. Security token (zip code)

7. Send secured request (zip code)

8. Return result

Requestor Identity Provider Relying Party 1

1. Request certificate (birth date, zip code, ...)

2. Certificate (birth date, zip code, ...)

3. Send secured request (age>21 using birth date)

4. Return result

5. Send secured request (zip code)

6. Return result

(a) (b)

Figure 1. Message flows for traditional and idemix-based FIM protocols

of the requestor is required, a security assertion is obtained by the requestor from the identity provider and then
relayed to the relying party. This allows for the properties thati) the attributes are certified by the identity provider
andii) exactly the required attributes are conveyed to the relying party. The first property provides security for the
relying party, the second one privacy for the requestor. Though, the privacy only holds under the assumption that
identity providers cannot be controlled by the adversary, e.g., in a passive attack in which they collaborate with
relying parties to obtain profile information on the user’s activities. See Figure 1 (a) for a simplified federation
flow in WS-Federation Active Requestor Profile without showing policy-related messages. The example shows
two identity federation transactions, in the first one the requestor’s age is being established to be over 21, in the
second one the zip code of the requestor is conveyed. For each of those transactions, a new security token has to
be fetched from the identity provider, containing exactly the attribute information being shown.

2.2 Private Certificate Systems

A private certificate system is a generalization of anonymous credential systems in that sophisticated attribute
statements are supported. A private certificate system allows for obtaining private certificates and use them to make
certified claims, both issuing and using being possible in a privacy-enhancing way. Theidemixprivate certificate
system, whose key building block are the signature protocols of Camenisch and Lysyanskaya [5, 6], is the most
advanced private certificate system that is currently available. The system allows for very general ways of making
attribute claims, that is, releasing attribute information, to relying parties.

In the next few paragraphs, a general overview of private certificate systems is given. In the appendix, we give
more details on the properties of private certificate systems for the interested reader.

A user obtains private certificates fromidentity providers(IPs) and holds these certificates locally. Certificates
can have long lifetimes, e.g., multiple years.1 A certificate, once obtained, is never sent to a relying party. When-
ever the user needs to provide attribute information to a relying party, she uses one or multiple of her private
certificates to release partial information on their third party-endorsed attributes in a controlled way. This release
does neither involve the identity provider, nor a sending of the certificates. The data release protocol is based on a
zero-knowledge proof of knowledge (holdership) of certificates with appropriate attributes. Figure 1 (b) shows the
protocol flows for obtaining a private certificate and showing it to a verifier twice, the first time establishing that
her age is greater than 21 using the birth date attribute, the next time showing her zip code attribute. Is is easy to
see that the private certificate can leverage one certificate many times and each time release partial information.

As already mentioned, it is a key feature of the identity provisioning protocol, that the user canrelease partial
attribute informationof the involved certificates, e.g., can use the birth date attribute of one of her certificates
to prove that her age is greater than 21 without releasing any other information on the birth date attribute or
other attributes. The user cancombine attributes of multiple certificatesin one proof that verifies with respect to
multiple issuers’ certificate verification keys and state properties about them. Furthermore,attributes can provided
in encrypted formtogether with a proof that the ciphertext is an attribute of a particular certificate, that is, the

1It is worth noting that there are certificate revocation mechanisms available; revocation is an important feature when considering the
long lifetime of idemix certificates.

4

recipient can be sure that the requestor does not cheat in what she encrypts. This concept is denoted verifiable
encryption and allows one to realize accountability of a transaction while still maintaining anonymity. A private
certificate system allows touse the same certificate in multiple transactionsand release a (different) subset of
the attribute information of the certificate in each transaction while all transactions, including the issuing one, are
unlinkable to each other.

Semantics. The combined semantics of an idemix assertion and proof is the following: The assertion makes
claims regarding attributes of the user’s certificates and about encryptions and commitments contained in the
assertion. The proof provides a cryptographic proof of the assertion, that is, if the proof can be verified by the
relying party, the formula in the assertion holds; that is, the verifier can be assured that the user has certificates
with attributes as stated and the encryptions and commitments in the assertion have been computed as specified.

3 Discussion

Considering the properties of private certificate systems, using such systems for identity federation has the
following advantages over traditional established FIM protocols:

(a) The identity provider is not involved in can be off-line during the identity provisioning transaction to the
relying party. This reduces the number of messages being sent and reduces the amortized cost of a single
identity transaction over many reuses of the same certificates. This holds under the (realistic) assumption
that computation cycles of identity providers are the most expensive ones and are amortized over many uses
of a once-obtained certificate whereas in traditional FIM protocols the identity provider is involved in each
transaction.

(b) An identity provisioning transaction can involve attribute information from certificates of different identity
providers and allows for logical formulas being expressed over attributes over multiple certificates, e.g.,
bankstatement1.balance + bankstatement2.balance ≥ 4000.

(c) Attribute information can be provably encrypted without involvement of any party other than the requestor
and relying party. This means that the ciphertext is accompanied by a proof that shows that the correspond-
ing plaintext is the one claimed, e.g., the serial number of an electronic passport to allow for conditional
anonymity.

(d) Even if the identity providers and relying parties are controlled by an active attacker, that is they can all
arbitrarily deviate from the protocol in an orchestrated manner, they cannot link transactions unless attribute
information allows for this. Given that the attribute semantics are well defined such that attribute cannot be
used as covert channels between identity provider and relying parties, the unlinkability holds in this very
strong attacker model. Therefore, the privacy properties hold in a stronger attacker model than the model
for traditional FIM protocols.

Considering those properties of private certificate systems, their potential in identity federation is huge as they
even improve on the privacy that currently deployed FIM protocols based on traditional signature mechanisms
offer. Unfortunately, private certificate systems cannot be easily fit into currently deployed identity federation
protocols as those protocols typically rely on XML-DSig for certifying claims which has been built around the
concept of traditional signature schemes. As the idemix protocols are technically quite different—they are based
on zero-knowledge proofs—they cannot be used just as another signature scheme unless the standard’s explicit
and intended semantics is extremely widely interpreted and at some points violated. As one example, the standard
does not provide a facility for giving an assertion as input when doing a signature, but idemix requires an assertion
and the private certificates being input.

4 Construction

We provide a generic construction for transferring the semantics of a zero-knowledge proof-based protocol for
making certified claims, like the idemix protocol, to an XML Signature public key and a signature computed with

5

the corresponding secret key in Section 4.1. This construction generalizes to any conceivable signature standard
with sufficiently extensible semantics. As for the importance of the WS-Security protocol framework, we show in
Section 4.2 how the construction is carried over to a WS-Security protected message.

4.1 Generic Construction

This section provides our construction to integrate an authentication with a private credential system into a stan-
dard signature scheme and XML-DSig. The idea is that we transfer the authentication with the private credential
into the authentication with a temporary standard signature key with which an XML-DSIG can be generated.

For this authentication transfer our security model requires that the requestor is not trusted. Therefore, we need
to enforce that the requestor either chooses the temporary signature key faithfully according to the protocol or
that the verification aborts. In particular, we require that the requestor always chooses a pseudo-random and fresh
temporary signature key for each single certificate show.

This property of the signature key is very important as a malicious requestor may attempt to use a temporary
signature key multiple times, mis-bind keys of other principals, or bind a single key to multiple credentials.

Therefore, we transform an authentication statement with a private credential system (e.g., the party has the
attributesatt = ”‘is older than 21”’) to the following statement:

(a) This party has the attributesatt (e.g., ”‘is older than 21”’).

(b) This party holds the secret keyKs that corresponds to a temporary signature verification keyK.

(c) The key pair(Ks,K) is pseudo-random and freshly generated for this authentication statement.

For each statement made with a zero-knowledge proof-based protocol, we guarantee that a new temporary key pair
is freshly and pseudo-randomly generated. We enforce that the requestor chooses this key pair faithfully by means
of a verifiable pseudo-random functionand a corresponding zero-knowledge proof stating that the temporary
signature verification key was computed correctly. This model is natural for our setting as the one-timeness of
keys is required for the unlinkability of transactions and there is no need for the requestor to choose a key itself.

In terms of attribute claims our construction shows the following relationships: it binds claims that are proved
by a zero-knowledge proof-based mechanism to atemporary signature key paircreated for a single transaction.
This temporary key pair can be used to create XML signatures with semantics extended by the proved claims. The
claims are manifest in three new token types: anassertion tokenA, a proof tokenp, and atemporary public key
token. The temporary public key token is associated with claims regarding the key pair’s properties and faithful
generation. The assertion token provides additional claims about a user’s attributes that are associated with the
key pair. Finally, the proof token holds a two-fold proof for those claims: on the one hand, the properties and
faithful generation of the keys are proved; on the other hand, the additional claims of the assertion about the user’s
attributes are proved.

We will elaborate our method on the example of the idemix certificate proof protocol and idemix assertion, but
the same method applies to any zero-knowledge proof-based protocols that can be represented as a set of security
tokens, thus our construction is extremely general.

Setup. Let G be a prime orderq cyclic group andg a generator of it, bothg and the groupG are system
parameters.G andg are chosen such that they can be used as public parameters of a DSA signature scheme used
by all system participants. We assume that the signer has all private certificates required for the protocol to be
executed. We also assume that the parties have the certificate verification keys that are required as inputs to the
protocol.

Subsequently, we describe our construction which is a protocol between a requestor (the signer) and a relying
party (the verifier). The protocol proceeds by aGenerationdone by the requestor, sending the signed message to
a relying party, and aVerificationdone by a relying party. The generation and verification are explained in detail
below.

6

4.1.1 Signature Generation

Create an idemix assertionA and compute the idemix proofpA for the correctness of the assertion following the
idemix protocol CertificateProof for releasing data using private certificates.2 Compute the temporary signature
public keyK as averifiable random functionwith the idemix proofpA and the security context as input as follows:
Choose anx ∈R {1, ..., q} and computem asm = H(pA||context). The variablecontextcan contain other
security-relevant context information such as time or a nonce; this depends on the application the construction
is used for. Compute the valuey asy := gx and the temporary public keyK using the random function as

K := g
1

x+m
(mod q). The temporary secret keyKs is Ks := 1

x+m (mod q). The verifiability is accounted for by
computing the non-interactive proofpK that is specified as follows, using the widely-used zero-knowledge proof
specification language introduced by Camenisch and Stadler in [8]:

SPK{(α, β) : y = gα ∧K = gβ ∧ g = yβgmβ} (1)

This non-interactive proof shows thaty andK have been computed according to the protocol. The variableα
maps to the signer’s secretx andβ to the signer’s secret 1

x+m (mod q).
As next steps, the XML tokens for the assertion, the proofs, and the temporary public key have to be built.

We do not give the complete syntax for these tokens as it is analogous to the syntax we use in the method for
WS-Security as shown further below in Section 4.2, but independent of WS-Security. The semantics of the tokens
and references is outlined further below.

Construct the assertion token such that it encapsulates the assertionA. Construct the proof token such that it
contains the proofspA andpK . The proof token references the assertion token. The public key token contains the
keyK and a reference to the proof token.

Compute an XML signature with the private signing keyKs over the message to be signed and the security
tokens defined above. The result is a signed document with the semantics of an idemix certificate proof being
transferred to the verification key and thus also the XML signature.

4.1.2 Signature Verification

The verification of a message with signature received from a requestor is performed by the relying party as follows:
extract the reference to the temporary public key token from the XML signature. Obtain the reference to the proof
token from the public key token. Verify the correct generation of the temporary public key by verifying the
zero-knowledge proofpK . For this, compute m asm = H(pA||context) where the context can be derived in a
well-determined way. Verify the proofpK usingpK , m, andK as input. If the proof verifies, follow the reference
to the assertionA and verify the proofpA with respect toA and the public keys of the certificate issuers. If
successful, the public key is valid and has the semantics outlined below. Then the XML signature is verified with
the temporary public key. If the signature is valid, any further processing depends on the application and its trust
semantics.

Discussion. The temporary key pair(Ks,K) being computed as verifiable random function ofpA and the se-
curity context is a DSA key pair. The discrete logarithm nature of the DSA signature key pair allows for the
application of the verifiable random function for its generation. As DSA is a required signature algorithm of the
XML Signature Standard every implementation of XML-DSig can be used for our extensions.

The exponentx in is chosen freshly in each new execution of the protocol. The verifiable random function
assures thatK is pseudo random and derived from the proofpA without the requestor being able to choose the
key pair herself. The key is fresh aspA is guaranteed to be different whenever a new proof is executed, unless
the prover deviates from the protocol and reuses randomness in the idemix proof which would make her linkable
immediately. In addition, many applications allow the security context to be different in each execution of the
protocol, e.g., by including the current time or a challenge from the relying party. The private keyKs remains,
of course, secret to the prover and computing it from the values known to the relying party is computationally
intractable. We refer the reader to [10] for a security model and security proof for the verifiable random function
we use in our construction.

2The proofpA is the non-interactive version of the certificates show protocol including corresponding zero-knowledge proofs.

7

Semantics. The temporary public key token has the semantics that the contained public key and corresponding
private key is freshly generated frompA and asecuritycontext without the possibility of the requestor choosing
either part of the key pair. Additionally, further claims proved by a proof token referenced from the key token
and specified by the assertion token are associated with the temporary key. The semantics of the reference in the
public key token does not restrict in any way on whether one or multiple tokens are used to contain the proof and
further claims. The public key token references the proof with the semantics of the proof being a proof for the
claims about the key properties and additional claims carried by the assertion and being proved by the proof being
associated to the temporary key.

This immediately gives rise to the new comprehensive semantics of the temporary signing key by the combined
semantics of the key properties and the identity claims regarding the key holder associated to the key as stated
in the assertion. This semantics transfers to the signatures that are made with the temporary key. A signature
represents a proof of possession of the private key corresponding to the public key and thus securely binds the
claims associated to the public key to the signed content.

For the application semantics this boils down to the party signing with the secret key associated to the public
key provably has the properties as stated in the idemix assertion.

4.2 WS-Security

Using the above generic construction for XML-DSig as a template, we transfer the idemix semantics to XML
signatures for web services messages of the WS-Security protocol framework. This allows us to bind claims
authenticated by any zero-knowledge proof-based protocol to web services messages. When the idemix assertion
token and proof token are placed as security tokens inside a WS-Security header, this alone could already convey
the basic semantics of the idemix proof to the relying party. Though, there would be no secure binding of the
semantics to the web service message, thus the conveyed semantics would not be of much use in a WS-Security
context.

Thus it is required to have a secure binding of the idemix semantics to the WS-Security header. This binding
can be achieved by leveraging our basic construction of Section 4.1 and transferring the semantics to the WS-
Security-protected message with an XML signature. The assertion, proof, and public key tokens are again used in
this construction, this time with WS-Security-specific syntax and semantics. The semantics remains basically the
same, it only needs to be mapped to WS-Security terminology.

The temporary private key is used for making an enveloped signature over the whole web services message.
This step performs the secure binding of the proof to the web services message.

4.2.1 Message Generation

We again require anassertiontoken, aproof token, and atemporary public keytoken for our method (see Figure 2
and Appendix A). F or WS-Security integration, they have to be designed specifically as WS-Security security
tokens. The temporary private key is used for making an enveloping XML signature over the complete web
services message. The WS-Security specification defines theSecurityTokenReference mechanism for
referencing security tokens which extends the semantics of the XML signature by t he semantics of the security
token. We use this reference mechanism in the XML signature in order to use our custom temporary public key
token for the signature.

The temporary public key token contains a key claim regarding the key and its properties, but no further associ-
ated claims. The token provides for a mechanism for referencing another security token (that can again reference
others or be referenced from others) that contains a proof of the claimed key properties and that can provide further
claims and proofs thereof. These further claims are associated with the temporary key pair.

The referenced security token (the proof token) contains the proof of the key properties and a proof of additional
claims made by the assertion referenced from the proof.

Semantics. The semantics of the basic construction for the proof with assertion and the temporary key remains
unchanged and defines the key claim and associated claims. That is, the temporary signing key is endorsed by the
proof, that is, third party-endorsed claims are securely bound to the key. The signature with the temporary key is

8

WS-Security Header

Assertion

Proof

Temporary
Public Key

Enveloped
Signature

WS-Security
Body

pA pK

Figure 2. Structure of a WS-Security token with a zero-knowledge proof

a proof-of-possession of the temporary secret key. The signature with the temporary signing key is also a claim
confirmation with the semantics defined in WS-Trust as it can only be performed by the holder of the secret key.
This claim confirmation immediately leads to a cryptographic binding of the claims to the web service message.

The temporary key token contains the key material for the signature verification key. The key seman-
tics is that the key is temporary and freshly and randomly generated. The token is not endorsing this
claimed key semantics. The endorsement and further claims are contained in a token referenced within the
AssociatedEndorsedClaims element. The semantics is that the referenced token provides a proof for
the claimed key properties. The token may also provide further third-party endorsed claims that are bound to the
temporary public key. In our case, the referenced token is the idemix proof token.

The idemix proof token contains a reference to an idemix assertion token. The proof provides a proof of the
statements of the assertion. The proof token also carries the proof for the properties of the key (freshly randomly
generated).

The assertion makes claims about the message producer, but relies on the proof token to prove the claims such
that the proof can be verified against the public keys of the certificate issuers for the certificates being used in the
proof.

5 Conclusion

We presented a generic construction for transferring the semantics of zero-knowledge proof-based protocols
like private certificate systems to XML-DSig keys and signatures.

We demonstrated the use of our method by seamlessly integrating a private certificate system into WS-Security
and therefore enabling a new WS-Federation Active Requestor profile with superior privacy properties.

To our knowledge, our approach is the only feasible one within the following requirements:

(a) not to change the XML-DSig Standard as it is already stable and changes toward zero-knowledge proofs
may complicate the XML-DSig semantics beyond manageability.

(b) not to resort to an extremely wide interpretation of standard parts beyond its original intensions and even to
violations of its intended semantics.

To our judgment both requirements are mandatory to guarantee a wide acceptance and secure deployment of
XML-DSig-based protocols employing private certificate systems.

The extensions of XML-DSig and WS-Security use well-defined extensibility points are completely orthogo-
nal to the standards. That is, all existing XML-DSig and WS-Security deployments may stay untouched. Our
extensions compose seamlessly with existing standards semantics and, therefore, promote a easy application in an
industrial WS-Security environment.

References

[1] D. E. 3rd, J. Reagle, and D. Solo. XML-Signature syntax and processing, Mar. 2002.http://www.w3.org/TR/
xmldsig-core/ .

[2] S. Brands.Rethinking Public Key Infrastructure and Digital Certificates— Building in Privacy. PhD thesis, Eindhoven
Institute of Technology, Eindhoven, The Netherlands, 1999.

9

[3] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. InCCS ’04: Proceedings of the 11th ACM
conference on Computer and communications security, pages 132–145, New York, NY, USA, 2004. ACM Press.

[4] J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-show credential system with optional
anonymity revocation. In B. Pfitzmann, editor,Advances in Cryptology — EUROCRYPT 2001, volume 2045 ofLNCS,
pages 93–118. Springer Verlag, 2001.

[5] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In G. Persiano, editor,Third Conference
on Security in Communication Networks, volume 2576 ofLNCS, pages 274–295. Springer Verlag, 2002.

[6] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. InAdvances in
Cryptology — CRYPTO 2004, LNCS. Springer Verlag, 2004.

[7] J. Camenisch, D. Sommer, and R. Zimmermann. A general certification framework with applications to privacy-
enhancing certificate infrastructures. Technical Report 3629, IBM Research, November 2005.

[8] J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In B. Kaliski, editor,Advances in
Cryptology — CRYPTO ’97, volume 1296 ofLNCS, pages 410–424. Springer Verlag, 1997.

[9] D. Chaum. Security without identification: Transaction systems to make big brother obsolete.Communications of the
ACM, 28(10):1030–1044, Oct. 1985.

[10] Y. Dodis and A. Yampolsky. A Verifiable Random Function with Short Proofs an Keys. InPublic Key Cryptography,
volume 3386 of LNCS, pages 416–431, 2005.

[11] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In A. M.
Odlyzko, editor,Advances in Cryptology — CRYPTO ’86, volume 263 ofLNCS, pages 186–194. Springer Verlag,
1987.

[12] T. Groß and B. Pfitzmann. Proving a WS-Federation Passive Requestor profile. In2004 ACM Workshop on Secure Web
Services (SWS), Washington, DC, USA, Oct. 2004. ACM Press.

[13] T. Groß, B. Pfitzmann, and A.-R. Sadeghi. Proving a WS-Federation Passive Requestor profile with a browser model.
In 2004 ACM Workshop on Secure Web Services (SWS), Alexandria, VA, USA, Nov. 2005. ACM Press.

[14] P. Hallam-Baker, C. Kaler, R. Monzillo, and A. Nadalin. Web services security: SOAP message security, 2003.
[15] C. Kaler and A. N. (ed.). Web Services Federation Language (WS-Federation), Version 1.0, July 2003. BEA

and IBM and Microsoft and RSA Security and VeriSign,http://www-106.ibm.com/developerworks/
webservices/library/ws-fed/ .

[16] C. Kaler and A. N. (ed.). WS-Federation: Active Requestor Profile, Version 1.0, Jul 2003. BEA and IBM
and Microsoft and RSA Security and VeriSign,http://www-128.ibm.com/developerworks/library/
specification/ws-fedact/ .

[17] Liberty Alliance Project. Liberty Phase 2 final specifications, Nov. 2003.http://www.projectliberty.org/ .
[18] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys and C. Adams, editors,Selected

Areas in Cryptography, volume 1758 ofLNCS. Springer Verlag, 1999.
[19] OASIS Standard. Security assertion markup language (SAML) V2.0, Mar. 2005.
[20] B. Pfitzmann. Privacy in enterprise identity federation - policies for Liberty 2 single signon.Elsevier Information Se-

curity Technical Report (ISTR), 9(1):45–58, 2004.http://www.sciencedirect.com/science/journal/
13634127 .

[21] B. Pfitzmann and M. Waidner. Privacy in browser-based attribute exchange. InACM Workshop on Privacy in the
Electronic Society (WPES), pages 52–62, Washington, USA, Nov. 2002.

[22] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, Feb. 1978.

[23] US Department of Commerce and National Institute of Standards and Technology. Digital signature standard (dss).
Federal Information Processing Standards Publication, 2000.

A Details of the Token Format

We give an example of the skeleton of the WS-Security header of a web services message. Note that in the
example, the namespacewsse is the one of WS-Security, andcred the namespace for our extensions.

. . .
<wsse : S e c u r i t y>

<c red : ProofToken wsu : Id =” e n d o r s e dc l a i m s ”
xmlns : c red =”www. ibm . com / IdemixProofToken ”

<A s s e r t i o n F o r m a t fo rma t =”www. ibm . com / Ide m i xA sse r t i on Fo rm a t ”
<c red : Proof>

. . .
</ c red : Proof>
<!−− Refe rence t o t h e a s s e r t i o n−−>

10

<A s s e r t i o n R e f e r e n c e URI=”# a s s e r t i o nt o k e n ”/>
</ c red : ProofToken>

<c red : A s s e r t i o n wsu : Id =” a s s e r t i o nt o k e n ”>
. . .

</ c red : A s s e r t i o n>

<c red : TemporaryPubl icKey wsu : Id =” t e m pp u b l i c k e y ”>
<c red : Assoc ia tedEndorsedC la ims>

<wsse : Re fe rence URI=”# e n d o r s e dc l a i m s ”/>
</ c red : Assoc ia tedEndorsedC la ims>
<c red : KeyMater ia l>

. . .
</ c red : KeyMater ia l>

</ c red : TemporaryPubl icKey>

<ds : S i g n a t u r e>
<ds : S igned In fo>

. . .
<!−− s i g n a t u r e over message−−>

</ ds : S igned In fo>
<ds : S igna tu reVa lue>

. . .
</ ds : S igna tu reVa lue>
<ds : KeyInfo>

<!−− Refe rence t o key−−>
<wsse : Secu r i t yTokenRe fe rence>

<wsse : Re fe rence URI=”# t e m pp u b l i c k e y ”/>
</wsse : Secu r i t yTokenRe fe rence>

</ ds : KeyInfo>
</ ds : S i g n a t u r e>

</wsse : S e c u r i t y>
. . .

B Private Certificate Systems

B.0.2 Certificate Proof

A certificate proof protocol is an interactive protocolCERTIFICATEPROOF between auserand arelying party.
The protocol conveys an assertion from the user to the relying party that specifies claims made by the user to the
relying party. The interactive steps of the protocol provide a proof of the assertion to the relying party by the
means of cryptographic zero-knowledge proofs.

A non-interactive variant of the protocol can be obtained by applying the Fiat-Shamir heuristic [11] to the
interactive zero-knowledge proofs of the protocol. The non-interactive protocol fits into a single message which
is the reason why we will only consider the non-interactive variant for our constructions. It requires that the user
create two tokens, theassertiontoken and theproof token, that are both sent to the relying party. The two tokens
together convey claims (in the assertion) and a proof of these claims (in the proof) to the relying party in a single
message exchange. The relying party checks the correctness of the proof by executing the verification algorithm
on the proof, the assertion, and the appropriate public keys of certificate issuers as governed by the assertion.

Assertion. The assertion specifies the claims that are made by the user to the relying party. These claims are
claims about attributes of certificates the user has and about encryptions and commitments contained in the as-
sertion and their relation to attributes of certificates. The assertion consists of three sections, alogical formula
specifying the claims,certificate informationproviding information on the types of the involved certificates and
the public key of their issuers, andencryptions and commitments.

Thelogical formulais a formula in predicate logic without without negation and without quantifiers. It connects
predicateswith the logical AND and OR operators. Predicates are expressed overvariablesthat can be instantiated

11

with different types of objects. A variable can either refer to anattributeof a certificate the user has (knows), or
to anencryptionor commitmentcontained in the third section of the assertion. A predicate makes a statement on
variables – predicates that express polynomial relations on the variables are supported. For integer attributes, the
comparison operators>,≥, <,≤, =, and6= are available, for string attributes only=, and6=.

When a variable refers to anattribute, we mean the value of the specified attribute of a certificate the user
possesses. The certificate is specified by its type, its issuer, and verification key in the second section of
the assertion. The semantics is that the user has a certificate that contains an attribute with a value that ful-
fills the properties as stated by the predicate that uses the variable. For example, a predicate can state that
bankstatement.balance ≥ 4000 wherebankstatement.balance is the variable referring to the value of the
balance attribute of the user’s bank statement.3

A variable referencing anencryptionrefers to the plaintext value of a particular ciphertext that is contained in
the third section of the assertion together with information regarding the key it was encrypted under. The semantics
is that the ciphertext is an encryption of the plaintext under a specified third party’s key and the statements for the
plaintext hold as expressed by the predicate. For example,enc1 = bankstatement.balance specifies that variable
enc1 appearing in the third section of the assertion is an encryption of the value of the balance attribute of the user’s
bank statement certificate. The variablebankstatement.balance again refers to the balance attribute of the bank
statement certificate of the user.

Each ciphertext has a decryption condition cryptographically bound to it. This condition is agreed upon by both
user and relying party and defines under what conditions a decryption of the ciphertext may be requested from the
third party by the relying party. The third party must verify the decryption condition and only decrypt in case the
decryption condition is fulfilled. The semantics and verification of the decryption condition is out of the scope of
the cryptographic system.

A variable referring to acommitmentrefers to the committed value, not the cryptographic commitment itself,
analogous to ciphertexts. The semantics is that the commitment is a commitment of a value as specified by the
predicate. The cryptographic commitment is contained in the third section in the assertion.
Example assertion:

Formula passport.bdate ≤ current date− 21years ∧ passport.holder = idcard.holder ∧
idcard.zipcode = 7890 ∧ enc1 = passport.snr

Key information (passport, PKUSPPAuth), (idcard, PKUSIDAuth)
Encryptions and
commitments

(enc1, cryptographic value;PKET ; cond = “When the user does not comply to the
general terms of the service, the ciphertext may be decrypted for legal actions.”)

In this example, the birth date attribute of the electronic passport of the user is used to establish that the user’s
age is greater than or equal to 21 years. The zip code attribute of the idcard certificate is released and a prove
is given that the holder of the passport and the idcard is the same person. Within the encryptionenc1 the serial
number of the user’s passport is encrypted. The second section of the assertion contains the key information
for the two certificates used in the formula. The third section contains the ciphertext referenced byenc1, the
corresponding public key information, and the decryption condition.

A more advanced feature of what can be expressed in an assertion is a logicalORrelation between predicates,
e.g., that the user establishes her age with either a US passport or a Swiss one without revealing the information
on which passport she actually holds. See [7] for more details on these features and their semantics.

Proof. The proof is a cryptographic proof that the assertion is certified, that is, that the requestor has private
certificates fulfilling the attribute statements in the assertion and that the ciphertexts and commitments in the
assertion have been computed correctly. The proof either is an interactive protocol or, when applying the Fiat-
Shamir heuristic, it can be expressed in a single token.

Generally, zero-knowledge proofs allow for proving statements without revealing any further information. The
idemix protocols build on zero-knowledge proofs for proving that one knows (has) a signature on a set of attributes
(that is, a certificate) without revealing the signature and without revealing the attributes. In addition to this, known
zero-knowledge proof techniques can be used to prove properties of attributes, e.g., that the balance attribute is

3A real-world use case would typically require that the user also prove that the bank statement is a recent one. We keep this out of our
example in order to keep it simple.

12

greater than 4000, without revealing the attribute. All these protocols are computationally very efficient and thus
the idemix system is highly practical.

B.0.3 Certificate issuing

A private certificate is obtained by the interactive protocolISSUECERTIFICATE between thereceiverof the certifi-
cate and theissuer(identity provider). As a prerequisite we assume that the receiver has provided cryptographic
commitments of attribute information of certificates in a prior protocol with the identity provider (the roles in
this protocol were user and relying party). This approach of doing aPROOFCERTIFICATE protocol first fits, for
example, into the WS-Trust security token exchange paradigm. What attributes have to be committed to is defined
via the policy of the issuer. It is worth noting that these commitments being made do not reveal any information
(information theoretically) regarding the committed value to the issuer, but allow that the issuer can include the
committed values into the certificate to be issued.

Each attribute of the certificate to be issued is eitherknown to the issuer, jointly randomly generated, committed
by the receiver, or unknown to the receiver. The case of the attribute being known to the issuer is the standard
case of determining the attribute, this is the way as signed security tokens are being issued today, e.g., X.509
certificates. Jointly randomly chosen attributes are useful for realizing e-coins by using the random number as
serial number of the e-coin, but preventing either of the parties determining it and the relying party from learning
it. Committed attributes are key for realizing a general private certificate system in which certain prerequisite
certificates are shown, and based on this new certificates are issued, possibly including attributes of the shown
certificates, but without the issuer learning those. This feature is important for binding private certificates to the
user, e.g., via including a user’s master secret and pseudonym as an attribute in each certificate without the issuer
learning this attribute. The case of an attribute unknown to the issuer is a niche case with little importance.

Compared to traditionally used certification schemes based on signature mechanisms like RSA [22], idemix
allows for much stronger privacy properties in the certification process as attributes from other certificates can be
taken into the certificate without letting the issuer learn them; the issuer only learns that the receiver has certificates
from trusted issuers on them. We will not consider the issuing in more detail in this paper as our focus are the
proof protocols and their application within XML-Dsig and WS-Security. It shall be mentioned that the issuing
can be realized within the WS-Trust framework by using its multi-round token exchange features.

13

